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ABSTRACT

The distribution of model-based estimates of equilibrium climate sensitivity has not changed sub-

stantially in more than 30 years. Efforts to narrow this distribution by weighting projections ac-

cording to measures of model fidelity have so far failed, largely because climate sensitivity is inde-

pendent of current measures of skill in current ensembles ofmodels. Here we provide a cautionary

example showing that measures of model fidelity that are effective at narrowing the distribution of

future projections (because they are systematically related to climate sensitivity in an ensemble of

models) may be poor measures of the likelihood that a model will provide an accurate estimate of

climate sensitivity (and so degrade distributions of projections if they are used as weights). Fur-

thermore, it appears unlikely that statistical tests alonecan identify robust measures of likelihood.

We consider two ensembles: one obtained by perturbing parameters in a single climate model, and

a second containing the majority of the world’s climate models. The simple ensemble reproduces

many aspects of the multi-model ensemble, including the distributions of skill in reproducing the

present-day climatology of clouds and radiation, the distribution of climate sensitivity, and the de-

pendence of climate sensitivity on certain cloud regimes. By restricting error measures to those

regimes we can identify tighter relationships between climate sensitivity and model error and nar-

rower distributions of climate sensitivity in the simple ensemble. These relationships, however, do

not carry into the multi-model ensemble. This suggests thatmodel weighting based on statistical

relationships alone is unfounded, and perhaps that climatemodel errors are still large enough that

model weighting is not sensible.
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1. Model error and climate sensitivity

Equilibrium climate sensitivity, defined as the response inglobal-mean near-surface tempera-

ture to a doubling of atmospheric CO2 concentrations from pre-industrial levels, is a useful proxy

for climate change because many other projections scale with it. Climate models produce a range

of estimates of climate sensitivity which can themselves besensitive to fairly small changes in

model formulation (Soden et al. 2004). The distribution of these projections has remained roughly

the same for more than 30 years (compare, for example, Charney 1979; Solomon et al. 2007).

One might expect that with improvements of climate models over time, projections would

converge to a narrower distribution, but this has not yet proved true: successive generations of

climate models have produced improved simulations of the present-day climate (Reichler and Kim

2008) but commensurate distributions of climate sensitivity (Knutti et al. 2008).

The distribution might also be narrowed by invoking Bayes’stheorem and weighting each pre-

diction of climate sensitivity by the likelihood of the corresponding model (Murphy et al. 2004;

Stainforth et al. 2005; Knutti et al. 2010). This likelihoodis usually modeled as a decreasing

function of model error, defined as some measure of the difference between long-term averages of

observations and model simulations of the present-day climate. Weighting ensembles is fraught

with theoretical issues including the impact of the sampling strategy used to construct the ini-

tial ensemble (Frame et al. 2005) and questions of how to treat an ensemble in which members

have varying degrees of interdependence (e.g. Knutti et al.2010; Tebaldi and Knutti 2007). But

weighting projections has so far failed to substantially narrow distributions of climate sensitivity

for a more practical reason: in current ensembles of climatemodels, global measures of error are

not systematically related to climate sensitivity or the underlying feedbacks (Knutti et al. 2006;
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Murphy et al. 2004; Piani et al. 2005; Sanderson et al. 2008; Collins et al. 2011).

Any observable measure of present-day error that is correlated with climate sensitivity in a

given ensemble of climate projections, if used as a weight, would narrow the distribution of cli-

mate sensitivity estimates. This makes it tempting to seek such measures. But if the systematic

relationships between the present day and the future in an ensemble of models have causes which

are not shared by the physical climate system, weighting by such a measure can introduce substan-

tial projection errors (Weigel et al. 2010).

Here we provide a practical demonstration of how hard it can be to determine whether relation-

ships between the present day and the future in a given ensemble have a more general basis. We

consider two ensembles of climate models: one containing a wide range of models and another

employing a single model with varied values of closure parameters. We use the simpler, single-

model ensemble as a proxy for understanding the behavior of the more complicated multi-model

ensemble, much as one might use the more complicated ensemble to understand the real world.

Section 2 describes the construction of the simple ensemble; we then show that this simple en-

semble reproduces several relevant aspects of the multi-model ensemble. Section 4 describes the

construction of a metric of present-day performance that iscorrelated with climate sensitivity in

the simple model but does not generalize to the multi-model ensemble. We conclude by exploring

the implications for model weighting.
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2. A simple ensemble spanning a range of errors and climate

sensitivities

We construct a perturbed-parameter ensemble by varying thevalues of selected closure param-

eters (Table 1) in physical parameterizations of the general circulation model ECHAM5 (Roeckner

et al. 2003). The parameters are uncertain in observations and are those used to adjust the model

so that its energy budget is balanced at the top of atmosphere(to within observational uncertainties

and accounting for ocean heat storage). Each parameter is restricted to fairly small ranges near the

default and all parameters are sampled simultaneously using Latin hypercube sampling (McKay

et al. 1979). Five hundred realizations of ECHAM5 are created and each model is run for a single

year using present-day climatological distributions of sea ice and sea surface temperature.

For each ensemble member, we compute an aggregate measure ofthe error in simulating the

present-day distribution of clouds, radiation, and precipitation. Because it is not known which

observable aspects, if any, of the present-day climate are connected to climate sensitivity, any ag-

gregate metric is arbitrary; we justify the narrow focus of our choice by noting that a) differences

in cloud feedbacks drive much of the diversity in climate sensitivity estimates from climate models

(Soden and Held 2006), particularly by affecting the radiation budget, and b) a majority of the var-

ied parameters are cloud-related. We compute the root-mean-square error relative to observations

for cloud fraction, longwave and shortwave cloud radiativeeffects at the top of the atmosphere

(e.g. Hartmann and Short 1980), and surface precipitation over each month of the annual cycle

(Pincus et al. 2008). These errors are much larger in our short integrations than for long runs

with well-tuned models because sampling errors are large. Still, the difference in errors based

on individual years from longer runs (described below) is very small relative to the difference in
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error spanned by the ensemble, indicating that the diversity in error is robust. Errors in individual

fields are standardized so that the distribution of each error across the ensemble has zero mean and

a standard deviation of one, then added together to provide an aggregate error measure for each

model, where low errors reflect greater skill relative to other members of the ensemble.

We sort the models according to this measure of aggregate error and compute the equilibrium

climate sensitivity of every tenth model across the range ofaggregate skill (so that the distribution

of skill in the initial ensemble is roughly preserved). Ten-year runs are performed using a slab

ocean model and present-day greenhouse gas concentrations, from which we determine the flux

corrections necessary to maintain present-day sea surfacetemperatures. A fifty-year simulation is

then performed using the same ocean heat flux corrections butwith doubled carbon dioxide con-

centrations. Equilibrium climate sensitivity is computedas the difference in global mean surface

temperature between the last ten years of the doubled CO2 and the present-day simulations.

3. The simple ensemble as proxy for the multi-model ensemble

Results from this ensemble, in which all diversity arises from parametric uncertainty, are com-

parable in many ways to the multi-model ensemble from the World Climate Research Programme’s

Coupled Model Intercomparison Project phase 3 (CMIP3; see Meehl et al. 2007), which represents

the majority of the world’s climate models and contains bothparametric and structural variabil-

ity. In particular, the distributions of climate sensitivity (Figure 1a) and our aggregated measure

of model error (Figure 1b) are similar in both ensembles. These quantities are not systematically

related to each other in either ensemble (Figure 2). The similarity in the distributions of error and

sensitivity, as well as the lack of a connection between the two, mirror previous experiences across
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a wide range of perturbed-parameter ensembles (Murphy et al. 2004; Stainforth et al. 2005; Collins

et al. 2011).

The two ensembles also share an important structural feature: the same mechanism underlies

the variability in climate sensitivity. In both ensembles,models with a large change in the net cloud

radiative effect under doubled CO2 concentrations are those with higher climate sensitivity (Figure

1a). The longwave cloud radiative effect in our ensemble does not change much between present-

day and doubled CO2 conditions, while diversity in shortwave cloud radiative effect (CRESW )

changes, in turn, is largely driven by diversity in the response of low-latitude oceanic boundary

layer clouds (Bony and Dufresne 2005).

By these measures, the perturbed-parameter ensemble is a successful proxy for the multi-model

ensemble. This allows us to test the generality of model weighting techniques in two structurally

distinct but statistically similar ensembles.

4. Developing measures of model error linked to climate sensi-

tivity

We now design a measure of error in reproducing the present-day climate that is explicitly re-

lated to climate sensitivity in our simple ensemble. We identify such a measure by focussing on

the low-latitude oceanic boundary layer clouds whose response is tightly linked to climate sensi-

tivity (Bony and Dufresne 2005). Boundary layer clouds dominate CRESW in subsidence regions,

i.e. where the mid-tropospheric pressure velocity is downward (ω500 > 0), so we sort present-

day CRESW by this quantity (Bony et al. 2004). In our ensemble the present-day distribution of
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CRESW in subsidence regions differs markedly between the ten highest- and ten lowest-sensitivity

model variants (Figure 3a). Higher sensitivity models haveweaker values of CRESW , indicating

that clouds are some combination of less frequent, less extensive, or less reflective than in low-

sensitivity simulations. The higher sensitivity models are also more consistent with observations

(here, cloud radiative effect derived from satellite observations (Wielicki et al. 1996; Loeb et al.

2009) and sorted byω500 inferred from ERA-Interim reanalysis data (Simmons et al. 2007)). Al-

though the highest- and lowest-sensitivity models in our ensemble are distinct from each other, at

the most frequent values of subsidence essentially all members over-estimate CRESW relative to

observations. In regions of large-scale ascent (ω500 < 0) the distributions of CRESW in the highest-

and lowest-sensitivity models are much broader and overlapsignificantly.

In nature, boundary layer clouds in subsiding regions over the oceans are further correlated

(Medeiros and Stevens 2011) with lower tropospheric thermodynamic stability (LTS; see Brether-

ton and Wyant 1997; Klein and Hartmann 1993), here defined as the difference in the potential

temperature at 1000 hPa and 700 hPa. Our simple ensemble reproduces this dependency as well

(Figure 3b). Through much of the range of LTS the highest- andlowest-sensitivity models are

indistinguishable, but in the range 13 K< LTS < 17 K CRESW in the high-sensitivity models is

consistently weaker, and in better agreement with observations, than for low-sensitivity models.

These are the most frequent values of LTS in subsiding regions in our ensemble.

Figure 3 demonstrates why global measures of skill are unrelated to model climate sensitivity:

because the clouds whose systematic changes explain the diversity in sensitivity occur in a small

region of the globe. Most measures of skill compare models toobservations in global domains

(e.g. Gleckler et al. 2008; Pincus et al. 2008; Reichler and Kim 2008). Restricting the geographical

domain over which errors are computed would not change this result much: even considering only
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the low-latitude oceans, the root-mean-square differencewith observations are influenced not only

by the regions controlling the sensitivity but also by ascending regions, where errors are large, and

low-sensitivity models perform somewhat better, on average.

We define instead a conditioned error measureEc as the root-mean-square difference between

model simulations and observations of CRESW integrated over regions with large-scale subsidence

(ω500 > 0.03 Pa s-1) and moderate lower tropospheric stability (13 K< LTS < 17 K). Regions

satisfying both conditions comprise just 5% of the area of the tropics (2.5% of the globe) in the

observations and somewhat more in the models. Nonetheless,Ec is a reasonably good predictor

of climate sensitivity in the simple ensemble (Figure 4), which means it can be used to narrow the

distribution of climate sensitivity estimates. Figure 4b shows the distribution of climate sensitiv-

ity obtained from the perturbed-parameter ensemble beforeand after weighting by the likelihood

L(Ec) = exp(−Ec/2) (Murphy et al. 2004). The standard deviation of the posterior distribution

is 3/4 of that of the prior distribution, mostly because a fewmodels with low sensitivity have large

errors and hence low weight. The mean climate sensitivity also increases by 0.35 K.

But despite the many similarities between the perturbed-parameter and multi-model ensembles,

the systematic relationship between climate sensitivity andEc does not carry into the multi-model

ensemble (Figure 5), nor does the distribution of sensitivity estimates from the multi-model en-

semble change when weighted byL(Ec).
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5. Implications for weighting projections from multi-model en-

sembles

One could conclude that we have obtained a null result and that the single-model perturbed-

parameter ensemble is, after all, a poor proxy for the multi-model ensemble. Instead, we propose

that these calculations are a concrete illustration of someof the issues involved in the weighting

and more general interpretation of multi-model ensembles.

First, our results confirm that it is possible to obtain distributions of climate sensitivity and

global measures of error as diverse as those produced by the multi-model ensemble with even

modest variations about a single model. This suggests that variability in error and sensitivity at

these levels is easy to come by (though why this is so remains an intriguing open question). In fact,

in our ensemble diversity in skill and climate sensitivity arises from surprisingly simple parametric

sensitivity: Climate sensitivity is primarily related to the entrainment rate for shallow convection,

which varies along with a cloud mass flux parameter (explaining 44% of the variance in climate

sensitivity; Table 1), while aggregate error is related to another parameter, the entrainment rate for

deep convection (explaining 64% of the variance in aggregated error; Table 1). If broad diversity

in behavior can arise from underlying simplicity then the diversity itself is uninformative. This is

an illustrative reminder that the distribution of climate sensitivity from any model ensemble can

not be interpreted as an estimate of the total uncertainty inclimate sensitivity.

Second, while the motivation to narrow the distribution of climate sensitivity estimates is

strong, our results dramatize the danger of focusing exclusively on this goal. Relationships be-

tween sensitivity and model fidelity in any ensemble emerge from an unknown mix of underlying

similarity in model representation and error, statisticalsampling error, and physical relationships
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also present in the natural world. This means that arbitrarily-chosen error measures may arise

from underlying similarity not present in the physical climate system. We argue that because met-

rics developed from the full multi-model ensemble alone cannot be falsified by comparison to

more general ensembles, they can not be justified as a model likelihood purely on the basis of

the strength of the statistical connection between that metric and climate sensitivity. Indeed, where

observations have been used successfully to constrain model response (Hall and Qu 2006; Clement

et al. 2009) statistical metrics have been bolstered by physical arguments. Much depends on the

way weights are chosen, since incorrect weighting (that is,weighting not related to true model

likelihood) can substantially reduce the benefits of using an ensemble of projections (Weigel et al.

2010).

Finally, it is possible that present-day models are not yet sufficiently accurate to benefit from

model weighting. Weighting model projections by skill is anassertion that models are likely

to produce accurate estimates of future climate in proportion to their ability to reproduce some

aspects of the present-day climate; the implicit assumption is that models with higher skill are

more likely to be accurate representations of the physical climate system. But by most measures,

no current climate model produces distributions of the present-day climate statistically consistent

with observations (Gleckler et al. 2008; Pincus et al. 2008,see also Figure 3 and 5), implying that

all models are formally unlikely. Weighting an ensemble under these circumstances is essentially

asserting that incorrect models are more reliable than even-more-incorrect models. But the result

of Bayes’s theorem is ambiguous when the system being modeled is far from the system being

observed, and it may be that model weighting will be more profitable when the collection of models

we have is closer to the world we observe.
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List of Tables

1 List of perturbed parameters in the ECHAM5 ensemble, theirdescription, default

value, the range they are varied in and the percentage contribution to the variation

in skill and climate sensitivity.1Default value in the atmosphere-only model.2

Default value in the coupled model. *Indicates coupled parameters, to keep top of

the atmosphere radiative fluxes close to balance. 18
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TABLE 1. List of perturbed parameters in the ECHAM5 ensemble, their description, default value,
the range they are varied in and the percentage contributionto the variation in skill and climate
sensitivity. 1Default value in the atmosphere-only model.2 Default value in the coupled model.
*Indicates coupled parameters, to keep top of the atmosphere radiative fluxes close to balance.

Description Default Range R2[%] R2[%]
of parameter value Skill Sensitivity

Entrainment rate for shallow convection* (Tiedtke 1989) 0.0003 0.0003 - 0.001 3 44
Cloud mass flux above level of non-buoyanc* (Tiedtke 1989) 0.11/0.32 0.1 - 0.3333 3 44
Entrainment rate for penetrative convection (Tiedtke 1989) 0.0001 0.00001 - 0.0005 64 0
Conversion rate from cloud water to rain (Tiedtke 1989) 0.0004 0.0001-0.005 0 1
In-homogeneity of liquid clouds (Cahalan et al. 1994) 0.7 0.65 - 1 4 0

In-homogeneity of ice clouds (Cahalan et al. 1994) 0.71/0.82 0.65 - 1 20 1
Asymmetry of ice particles in clouds (Stephens et al. 1990) 0.911/0.852 0.75 - 1 0 1

Coefficient for horizontal diffusion 12 6 - 24 6 5
Gravity wave drag activation threshold (mean) (Lott 1999) 500 400 - 1000 2 0
Gravity wave drag activation threshold (stddev) (Lott 1999) 200 100 - 700 2 0

Albedo minimum of snow/ice 0.6/0.5 0.45 - 0.65 8 0
Albedo maximum of snow/ice 0.8/0.75 0.75 - 0.9 9 3
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List of Figures

1 Climate sensitivity and skill in two ensembles of climate models. a) Equilibrium

climate sensitivity as a function of the change in global annual mean net cloud

radiative effect (∆CRE) under doubled CO2 conditions. The CMIP3 ensemble is

shown with red dots; the models are also labelled. The distribution of climate sen-

sitivities is similar in the two ensembles, as is the mechanism driving the variabil-

ity (the change in cloud radiative effect). Background colors indicate the highest

(red) and lowest (blue) sensitivity models used later. b) Distributions of aggre-

gate skill in present-day simulations of clouds, radiation, and precipitation for our

perturbed-parameter ensemble (histogram) and from the CMIP3 ensemble (dots).

The skill measure integrates over the annual cycle, the geographic distribution, and

four variables. Black dots indicate the performance of the base ECHAM model

(atmosphere-only and coupled to an ocean model) within the CMIP3 ensemble. 22

2 Global measure of skill, aggregated over cloud radiative effects, precipitation and

cloud cover are unrelated to climate sensitivity in a simpleensemble and the multi-

model CMIP3 ensemble. 23

19



3 Relationships between present-day cloud properties and atmospheric state in a

perturbed-parameter ensemble. Both figures are restrictedto the tropical (30◦S

– 30◦N) oceans. The ten highest- and lowest-sensitivity models (red and blue, re-

spectively) in the perturbed-parameter ensemble are shown; box and whisker plots

summarize the medians (central lines), quartiles (box ends), and range (whiskers)

of the distributions. Observations are shown in black, and the frequency distribu-

tion of models and observations in the lower part of each panel. a) Monthly-mean

values of shortwave cloud radiative effect CRESW (all-sky fluxes minus clear-sky

fluxes) sorted by mid-tropospheric pressure velocityω500. Boundary-layer clouds

dominate in subsiding (ω500 > 0) regions where high- and low-sensitivity mod-

els in our ensemble are distinct. Global measures of skill, though, are dominated

by the errors unrelated to climate sensitivity occurring through the entire domain.

The grey area indicates regions used in figure 3b. b) Cloud radiative effect in sub-

sidence regions (ω500 > 0.03 Pa s-1) sorted by lower tropospheric stability. The

grey background color indicates regions used for weightingin figure 4b. High-

and low-sensitivity models are distinct through a 4 K range of stability, though the

ensemble is systematically roughly 2 K less stable than is observed. 24
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4 A tightly-focused measure of skill narrows the distribution of climate sensitivity in

a simple ensemble. a) Equilibrium climate sensitivity as a function of conditionally-

sampled root-mean-square error in shortwave cloud radiative effect of simulations

compared to satellite observations. The error is computed only in regions of de-

scending air (ω500 > 0.03 Pa s-1) and moderate lower tropospheric thermodynamic

stability (13 K < LTS < 17 K) over tropical oceans. b) Distributions of climate

sensitivity estimates before (black) and after weighting by a function of the er-

ror in panel a. Weighting by this metric decreases the standard deviation of the

distribution by about 23% and increases the mean by 0.35 K. 25

5 Relationships between present-day cloud properties and atmospheric state in a

multi-model ensemble. These figures are constructed in the same way as figure

3, but the distribution of cloud radiative effect as sorted by ω500 (a) or lower tro-

pospheric stability in subsiding regions (b) does not distinguish between high- and

low-sensitivity models in the CMIP3 ensemble. 26
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FIG. 1. Climate sensitivity and skill in two ensembles of climate models. a) Equilibrium climate
sensitivity as a function of the change in global annual meannet cloud radiative effect (∆CRE)
under doubled CO2 conditions. The CMIP3 ensemble is shown with red dots; the models are also
labelled. The distribution of climate sensitivities is similar in the two ensembles, as is the mecha-
nism driving the variability (the change in cloud radiativeeffect). Background colors indicate the
highest (red) and lowest (blue) sensitivity models used later. b) Distributions of aggregate skill
in present-day simulations of clouds, radiation, and precipitation for our perturbed-parameter en-
semble (histogram) and from the CMIP3 ensemble (dots). The skill measure integrates over the
annual cycle, the geographic distribution, and four variables. Black dots indicate the performance
of the base ECHAM model (atmosphere-only and coupled to an ocean model) within the CMIP3
ensemble.
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FIG. 2. Global measure of skill, aggregated over cloud radiative effects, precipitation and cloud
cover are unrelated to climate sensitivity in a simple ensemble and the multi-model CMIP3 ensem-
ble.
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FIG. 3. Relationships between present-day cloud properties and atmospheric state in a perturbed-
parameter ensemble. Both figures are restricted to the tropical (30◦S – 30◦N) oceans. The ten
highest- and lowest-sensitivity models (red and blue, respectively) in the perturbed-parameter en-
semble are shown; box and whisker plots summarize the medians (central lines), quartiles (box
ends), and range (whiskers) of the distributions. Observations are shown in black, and the fre-
quency distribution of models and observations in the lowerpart of each panel. a) Monthly-mean
values of shortwave cloud radiative effect CRESW (all-sky fluxes minus clear-sky fluxes) sorted
by mid-tropospheric pressure velocityω500. Boundary-layer clouds dominate in subsiding (ω500 >
0) regions where high- and low-sensitivity models in our ensemble are distinct. Global measures
of skill, though, are dominated by the errors unrelated to climate sensitivity occurring through the
entire domain. The grey area indicates regions used in figure3b. b) Cloud radiative effect in sub-
sidence regions (ω500 > 0.03 Pa s-1) sorted by lower tropospheric stability. The grey background
color indicates regions used for weighting in figure 4b. High- and low-sensitivity models are dis-
tinct through a 4 K range of stability, though the ensemble issystematically roughly 2 K less stable
than is observed.
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FIG. 4. A tightly-focused measure of skill narrows the distribution of climate sensitivity in a simple
ensemble. a) Equilibrium climate sensitivity as a functionof conditionally-sampled root-mean-
square error in shortwave cloud radiative effect of simulations compared to satellite observations.
The error is computed only in regions of descending air (ω500 > 0.03 Pa s-1) and moderate lower
tropospheric thermodynamic stability (13 K< LTS < 17 K) over tropical oceans. b) Distributions
of climate sensitivity estimates before (black) and after weighting by a function of the error in
panel a. Weighting by this metric decreases the standard deviation of the distribution by about
23% and increases the mean by 0.35 K.
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FIG. 5. Relationships between present-day cloud properties and atmospheric state in a multi-model
ensemble. These figures are constructed in the same way as figure 3, but the distribution of cloud
radiative effect as sorted byω500 (a) or lower tropospheric stability in subsiding regions (b) does
not distinguish between high- and low-sensitivity models in the CMIP3 ensemble.
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